iBoW-LCD: An Appearance-Based Loop-Closure Detection Approach Using Incremental Bags of Binary Words
نویسندگان
چکیده
منابع مشابه
iBoW-LCD: An Appearance-based Loop Closure Detection Approach using Incremental Bags of Binary Words
In this paper, we introduce iBoW-LCD, a novel appearance-based loop closure detection method. The presented approach makes use of an incremental Bag-of-Words (BoW) scheme based on binary descriptors to retrieve previously seen similar images, avoiding any vocabulary training stage usually required by classic BoW models. In addition, to detect loop closures, iBoW-LCD builds on the concept of dyn...
متن کاملA Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words
In robotic applications of visual simultaneous localization and mapping techniques, loop-closure detection and global localization are two issues that require the capacity to recognize a previously visited place from current camera measurements. We present an online method that makes it possible to detect when an image comes from an already perceived scene using local shape and color informatio...
متن کاملLoop Closure Detection on a Suburban Road Network using a Continuous Appearance-based Trajectory
This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or ...
متن کاملIncremental Loop Closure Verification by Guided Sampling
Loop closure detection, the task of identifying locations revisited by a robot in a sequence of odometry and perceptual observations, is typically formulated as a combination of two subtasks: (1) bag-of-words image retrieval and (2) post-verification using RANSAC geometric verification. The main contribution of this study is the proposal of a novel post-verification framework that achieves good...
متن کاملHuman Document Classification Using Bags of Words
Humans are remarkably adept at classifying text documents into categories. For instance, while reading a news story, we are rapidly able to assess whether it belongs to the domain of finance, politics or sports. Automating this task would have applications for content-based search or filtering of digital documents. To this end, it is interesting to investigate the nature of information humans u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Robotics and Automation Letters
سال: 2018
ISSN: 2377-3766,2377-3774
DOI: 10.1109/lra.2018.2849609